Namara Marketplace

National Incident-Based Reporting System: Minnesota 2016

Metropolitan Nonmetropolitan

Want total control?

Request access to start using the data.

County

Want total control?

Request access to start using the data.

Violent Crime

Want total control?

Request access to start using the data.

Murder And Nonnegligent Manslaughter

Want total control?

Request access to start using the data.

Rape Revised Definition 1

Want total control?

Request access to start using the data.

Rape Legacy Definition 2

Want total control?

Request access to start using the data.

Robbery

Want total control?

Request access to start using the data.

Aggravated Assault

Want total control?

Request access to start using the data.

Property Crime

Want total control?

Request access to start using the data.

Burglary

Want total control?

Request access to start using the data.

Larceny Theft

Want total control?

Request access to start using the data.

Motor Vehicle Theft

Want total control?

Request access to start using the data.

Arson

Want total control?

Request access to start using the data.

Blue Earth
15
1
7
0
7
103
42
52
9
1
Carver3
49
0
5
4
40
542
83
432
27
1
Clay
5
0
0
1
4
65
27
29
9
0
Dodge
4
0
0
0
4
71
12
47
12
0
Houston
4
0
2
0
2
42
7
32
3
0
Olmsted
23
0
13
2
8
280
85
170
25
7
Sibley
4
0
3
0
1
2
0
2
0
0
Stearns
47
0
15
2
30
454
79
345
30
1
Becker
17
0
4
0
13
118
51
48
19
0
Beltrami
52
0
9
2
41
387
94
251
42
2
Big Stone
1
0
1
0
0
23
11
12
0
0
Cook
5
0
3
0
2
115
29
83
3
0
Douglas
14
0
5
2
7
162
55
97
10
0
Faribault
2
0
2
0
0
62
29
24
9
0
Hubbard
20
0
6
1
13
209
74
126
9
1
Kanabec
22
0
0
0
22
237
68
140
29
0
Kandiyohi
22
0
3
2
17
166
26
126
14
0
Lake of the Woods
1
0
1
0
0
5
2
2
1
0
Marshall
5
0
1
0
4
44
8
29
7
1
Norman
0
0
0
0
0
2
0
2
0
1
Pine
78
0
20
6
52
864
164
597
103
6
Steele
13
1
1
1
10
80
21
49
10
1
Swift
2
0
0
0
2
6
5
0
1
0
Wilkin
3
0
1
1
1
20
1
18
1
0
Winona
12
1
0
0
11
47
7
34
6
0
Metropolitan Counties
Anoka
44
1
15
5
23
977
157
767
53
7
Chisago
12
0
2
0
10
213
51
145
17
0
Dakota
32
0
1
0
31
90
31
56
3
0
Fillmore
7
0
0
1
6
73
23
46
4
1
Isanti
28
0
10
0
18
328
88
216
24
1
Le Sueur
5
0
1
0
4
109
31
78
0
0
Ramsey
63
0
23
16
24
1096
140
876
80
1
St. Louis
51
1
13
1
36
717
244
397
76
9
Washington
75
0
19
4
52
848
180
603
65
0
Nonmetropolitan Counties
Aitkin
11
1
4
2
4
263
104
143
16
0
Cass
54
1
30
3
20
401
122
235
44
0
Chippewa
1
0
0
0
1
30
11
17
2
0
Clearwater
16
0
3
0
13
93
36
53
4
2
Crow Wing
24
0
6
1
17
321
116
190
15
1
Freeborn
3
1
2
0
0
79
27
43
9
1
Jackson
2
0
1
1
0
40
7
31
2
0
Kittson
1
0
0
0
1
20
2
18
0
0
Lincoln
12
0
0
0
12
0
0
0
0
0
McLeod
14
0
6
0
8
81
28
51
2
0
Murray
1
0
0
0
1
37
4
31
2
0
Nobles
4
0
1
0
3
24
15
8
1
0
Pennington
2
0
0
0
2
15
5
7
3
0
Red Lake
0
0
0
0
0
8
0
7
1
0
Renville
7
0
0
0
7
87
20
61
6
0
Stevens
5
0
4
0
1
36
17
19
0
0

Want to start using the data?

Namara offers a connection to over 250K data feeds from every industry and the tools to drive value and insight.