Metropolitan Nonmetropolitan
Want total control?Request access to start using the data. |
County
Want total control?Request access to start using the data. |
Violent Crime
Want total control?Request access to start using the data. |
Murder And Nonnegligent Manslaughter
Want total control?Request access to start using the data. |
Rape Revised Definition 1
Want total control?Request access to start using the data. |
Rape Legacy Definition 2
Want total control?Request access to start using the data. |
Robbery
Want total control?Request access to start using the data. |
Aggravated Assault
Want total control?Request access to start using the data. |
Property Crime
Want total control?Request access to start using the data. |
Burglary
Want total control?Request access to start using the data. |
Larceny Theft
Want total control?Request access to start using the data. |
Motor Vehicle Theft
Want total control?Request access to start using the data. |
Arson
Want total control?Request access to start using the data. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metropolitan Counties
|
Butler
|
46
|
0
|
8
|
5
|
33
|
486
|
150
|
293
|
43
|
7
|
|
Harvey
|
13
|
6
|
0
|
0
|
7
|
59
|
30
|
24
|
5
|
0
|
||
Jackson
|
13
|
0
|
4
|
0
|
9
|
96
|
31
|
55
|
10
|
1
|
||
Jefferson
|
30
|
1
|
3
|
0
|
26
|
163
|
39
|
103
|
21
|
0
|
||
Leavenworth
|
36
|
0
|
4
|
2
|
30
|
177
|
60
|
96
|
21
|
6
|
||
Osage
|
15
|
0
|
1
|
0
|
14
|
67
|
31
|
34
|
2
|
1
|
||
Nonmetropolitan Counties
|
Allen
|
15
|
0
|
1
|
0
|
14
|
45
|
20
|
22
|
3
|
0
|
|
Barber
|
2
|
0
|
0
|
0
|
2
|
19
|
7
|
11
|
1
|
0
|
||
Cowley
|
20
|
0
|
0
|
0
|
20
|
140
|
58
|
68
|
14
|
0
|
||
Dickinson
|
17
|
1
|
5
|
0
|
11
|
107
|
38
|
55
|
14
|
2
|
||
Ellsworth
|
0
|
0
|
0
|
0
|
0
|
22
|
11
|
9
|
2
|
0
|
||
Ford3
|
14
|
0
|
1
|
0
|
13
|
41
|
14
|
0
|
||||
Franklin
|
37
|
0
|
5
|
2
|
30
|
158
|
65
|
72
|
21
|
5
|
||
Gray
|
6
|
0
|
0
|
0
|
6
|
85
|
39
|
39
|
7
|
2
|
||
Greenwood
|
19
|
1
|
1
|
0
|
17
|
78
|
21
|
54
|
3
|
1
|
||
Harper
|
6
|
0
|
1
|
0
|
5
|
36
|
15
|
19
|
2
|
0
|
||
Montgomery
|
13
|
1
|
2
|
2
|
8
|
114
|
52
|
49
|
13
|
1
|
||
Morton
|
9
|
0
|
1
|
0
|
8
|
32
|
11
|
17
|
4
|
0
|
||
Nemaha
|
6
|
0
|
0
|
1
|
5
|
55
|
18
|
31
|
6
|
2
|
||
Neosho
|
25
|
1
|
1
|
0
|
23
|
59
|
19
|
33
|
7
|
1
|
||
Osborne
|
4
|
0
|
1
|
0
|
3
|
42
|
15
|
21
|
6
|
0
|
||
Ottawa
|
1
|
0
|
0
|
0
|
1
|
68
|
19
|
46
|
3
|
0
|
||
Pawnee3
|
2
|
0
|
0
|
0
|
2
|
11
|
4
|
2
|
||||
Rooks
|
1
|
0
|
1
|
0
|
0
|
11
|
6
|
5
|
0
|
0
|
||
Sherman
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Smith
|
1
|
0
|
0
|
0
|
1
|
13
|
4
|
8
|
1
|
0
|
||
Wilson
|
5
|
0
|
0
|
0
|
5
|
52
|
24
|
22
|
6
|
0
|
||
Doniphan
|
2
|
0
|
0
|
0
|
2
|
29
|
13
|
14
|
2
|
0
|
||
Johnson
|
40
|
0
|
9
|
2
|
29
|
225
|
52
|
149
|
24
|
3
|
||
Kingman
|
2
|
0
|
1
|
0
|
1
|
71
|
31
|
37
|
3
|
1
|
||
Shawnee
|
78
|
0
|
7
|
3
|
68
|
981
|
188
|
692
|
101
|
0
|
||
Wabaunsee
|
10
|
0
|
0
|
0
|
10
|
73
|
24
|
37
|
12
|
2
|
||
Anderson
|
2
|
0
|
0
|
0
|
2
|
30
|
17
|
12
|
1
|
1
|
||
Bourbon
|
25
|
0
|
4
|
1
|
20
|
94
|
32
|
49
|
13
|
0
|
||
Brown
|
5
|
0
|
1
|
0
|
4
|
32
|
3
|
26
|
3
|
0
|
||
Chautauqua
|
0
|
0
|
0
|
0
|
0
|
21
|
6
|
14
|
1
|
0
|
||
Clay
|
1
|
0
|
0
|
0
|
1
|
27
|
15
|
11
|
1
|
0
|
||
Coffey
|
7
|
0
|
1
|
0
|
6
|
51
|
9
|
38
|
4
|
1
|
||
Geary
|
14
|
0
|
1
|
1
|
12
|
50
|
19
|
31
|
0
|
0
|
||
Gove
|
0
|
0
|
0
|
0
|
0
|
10
|
1
|
7
|
2
|
0
|
||
Grant
|
5
|
1
|
0
|
0
|
4
|
22
|
6
|
15
|
1
|
0
|
||
Haskell
|
3
|
0
|
1
|
0
|
2
|
25
|
3
|
19
|
3
|
0
|
||
Kiowa
|
1
|
0
|
0
|
0
|
1
|
12
|
4
|
8
|
0
|
1
|
||
Labette3
|
15
|
1
|
0
|
0
|
14
|
20
|
1
|
0
|
||||
Logan
|
1
|
0
|
0
|
0
|
1
|
4
|
1
|
3
|
0
|
0
|
||
Ness
|
2
|
0
|
1
|
0
|
1
|
30
|
7
|
15
|
8
|
0
|
||
Rawlins
|
2
|
0
|
1
|
0
|
1
|
11
|
1
|
9
|
1
|
0
|
||
Rush
|
3
|
0
|
1
|
0
|
2
|
67
|
27
|
37
|
3
|
1
|
||
Saline
|
25
|
1
|
4
|
0
|
20
|
128
|
39
|
74
|
15
|
9
|
||
Thomas
|
0
|
0
|
0
|
0
|
0
|
15
|
4
|
6
|
5
|
0
|
Namara offers a connection to over 250K data feeds from every industry and the tools to drive value and insight.