Metropolitan Nonmetropolitan
Want total control?Request access to start using the data. |
County
Want total control?Request access to start using the data. |
Violent Crime
Want total control?Request access to start using the data. |
Murder And Nonnegligent Manslaughter
Want total control?Request access to start using the data. |
Rape Revised Definition 1
Want total control?Request access to start using the data. |
Rape Legacy Definition 2
Want total control?Request access to start using the data. |
Robbery
Want total control?Request access to start using the data. |
Aggravated Assault
Want total control?Request access to start using the data. |
Property Crime
Want total control?Request access to start using the data. |
Burglary
Want total control?Request access to start using the data. |
Larceny Theft
Want total control?Request access to start using the data. |
Motor Vehicle Theft
Want total control?Request access to start using the data. |
Arson
Want total control?Request access to start using the data. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lincoln
|
14
|
0
|
1
|
1
|
12
|
216
|
65
|
139
|
12
|
1
|
||
Pennington
|
118
|
1
|
52
|
5
|
60
|
382
|
78
|
280
|
24
|
1
|
||
Bon Homme
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
||
Butte
|
1
|
0
|
0
|
0
|
1
|
87
|
11
|
71
|
5
|
0
|
||
Campbell
|
1
|
0
|
0
|
0
|
1
|
6
|
4
|
2
|
0
|
0
|
||
Clark
|
3
|
0
|
2
|
0
|
1
|
8
|
3
|
5
|
0
|
0
|
||
Clay
|
9
|
0
|
1
|
0
|
8
|
67
|
30
|
35
|
2
|
0
|
||
Deuel
|
1
|
0
|
0
|
0
|
1
|
27
|
4
|
20
|
3
|
0
|
||
Hughes
|
7
|
0
|
1
|
0
|
6
|
21
|
11
|
7
|
3
|
0
|
||
Jerauld
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Marshall
|
9
|
0
|
5
|
0
|
4
|
47
|
14
|
26
|
7
|
0
|
||
Miner
|
0
|
0
|
0
|
0
|
0
|
6
|
5
|
1
|
0
|
0
|
||
Spink
|
2
|
0
|
1
|
0
|
1
|
38
|
10
|
28
|
0
|
0
|
||
Yankton
|
16
|
0
|
4
|
0
|
12
|
38
|
15
|
16
|
7
|
0
|
||
McCook
|
3
|
0
|
0
|
0
|
3
|
32
|
7
|
22
|
3
|
0
|
||
Minnehaha
|
47
|
4
|
6
|
1
|
36
|
424
|
171
|
222
|
31
|
3
|
||
Nonmetropolitan Counties
|
Aurora
|
0
|
0
|
0
|
0
|
0
|
5
|
1
|
4
|
0
|
0
|
|
Brown
|
9
|
0
|
1
|
0
|
8
|
41
|
11
|
25
|
5
|
0
|
||
Charles Mix
|
6
|
0
|
1
|
1
|
4
|
36
|
20
|
10
|
6
|
1
|
||
Dewey
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Douglas
|
2
|
0
|
0
|
0
|
2
|
4
|
2
|
1
|
1
|
0
|
||
Edmunds
|
2
|
0
|
0
|
0
|
2
|
2
|
0
|
2
|
0
|
0
|
||
Faulk
|
0
|
0
|
0
|
0
|
0
|
14
|
5
|
9
|
0
|
1
|
||
Hamlin
|
6
|
0
|
1
|
0
|
5
|
17
|
4
|
12
|
1
|
0
|
||
Lawrence
|
8
|
0
|
0
|
2
|
6
|
168
|
14
|
152
|
2
|
0
|
||
Moody
|
4
|
0
|
0
|
0
|
4
|
12
|
3
|
9
|
0
|
0
|
||
Sanborn
|
8
|
1
|
1
|
0
|
6
|
29
|
12
|
16
|
1
|
1
|
||
Sully
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
||
Walworth
|
4
|
0
|
1
|
1
|
2
|
4
|
0
|
4
|
0
|
0
|
||
Metropolitan Counties
|
Custer
|
4
|
0
|
1
|
0
|
3
|
42
|
8
|
30
|
4
|
0
|
|
Meade
|
23
|
2
|
4
|
0
|
17
|
104
|
25
|
66
|
13
|
1
|
||
Turner
|
11
|
0
|
1
|
0
|
10
|
50
|
10
|
31
|
9
|
0
|
||
Union
|
10
|
0
|
3
|
0
|
7
|
46
|
4
|
39
|
3
|
0
|
||
Beadle
|
5
|
1
|
0
|
0
|
4
|
14
|
4
|
6
|
4
|
0
|
||
Bennett
|
3
|
0
|
0
|
0
|
3
|
5
|
1
|
1
|
3
|
0
|
||
Brookings
|
6
|
0
|
0
|
0
|
6
|
53
|
12
|
37
|
4
|
0
|
||
Codington
|
9
|
0
|
2
|
0
|
7
|
40
|
3
|
33
|
4
|
0
|
||
Corson
|
1
|
0
|
0
|
1
|
0
|
32
|
7
|
22
|
3
|
0
|
||
Davison
|
3
|
0
|
2
|
0
|
1
|
18
|
5
|
8
|
5
|
0
|
||
Harding
|
2
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
||
Hutchinson
|
0
|
0
|
0
|
0
|
0
|
11
|
9
|
1
|
1
|
0
|
||
McPherson
|
1
|
0
|
1
|
0
|
0
|
14
|
7
|
4
|
3
|
0
|
||
Oglala Lakota
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Potter
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Roberts
|
10
|
0
|
0
|
0
|
10
|
13
|
4
|
5
|
4
|
0
|
||
Stanley
|
4
|
0
|
1
|
0
|
3
|
11
|
6
|
1
|
4
|
0
|
||
Tripp
|
0
|
0
|
0
|
0
|
0
|
16
|
0
|
15
|
1
|
0
|
Namara offers a connection to over 250K data feeds from every industry and the tools to drive value and insight.