Metropolitan Nonmetropolitan
Want total control?Request access to start using the data. |
County
Want total control?Request access to start using the data. |
Violent Crime
Want total control?Request access to start using the data. |
Murder And Nonnegligent Manslaughter
Want total control?Request access to start using the data. |
Rape Revised Definition 1
Want total control?Request access to start using the data. |
Rape Legacy Definition 2
Want total control?Request access to start using the data. |
Robbery
Want total control?Request access to start using the data. |
Aggravated Assault
Want total control?Request access to start using the data. |
Property Crime
Want total control?Request access to start using the data. |
Burglary
Want total control?Request access to start using the data. |
Larceny Theft
Want total control?Request access to start using the data. |
Motor Vehicle Theft
Want total control?Request access to start using the data. |
Arson
Want total control?Request access to start using the data. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barnes
|
0
|
0
|
0
|
0
|
0
|
57
|
30
|
21
|
6
|
0
|
||
Billings
|
1
|
0
|
0
|
0
|
1
|
10
|
3
|
7
|
0
|
0
|
||
Bottineau
|
4
|
0
|
0
|
0
|
4
|
70
|
19
|
37
|
14
|
0
|
||
Burke
|
0
|
0
|
0
|
0
|
0
|
5
|
1
|
4
|
0
|
0
|
||
Dickey
|
0
|
0
|
0
|
0
|
0
|
10
|
3
|
7
|
0
|
1
|
||
Foster
|
0
|
0
|
0
|
0
|
0
|
6
|
4
|
2
|
0
|
0
|
||
Griggs
|
0
|
0
|
0
|
0
|
0
|
13
|
6
|
6
|
1
|
0
|
||
Hettinger
|
2
|
0
|
0
|
0
|
2
|
23
|
4
|
16
|
3
|
1
|
||
McKenzie
|
25
|
0
|
5
|
0
|
20
|
205
|
40
|
122
|
43
|
0
|
||
Mercer
|
9
|
0
|
0
|
1
|
8
|
22
|
5
|
14
|
3
|
0
|
||
Pembina
|
3
|
0
|
1
|
0
|
2
|
69
|
16
|
37
|
16
|
1
|
||
Pierce
|
3
|
0
|
1
|
0
|
2
|
20
|
8
|
8
|
4
|
0
|
||
Ransom
|
6
|
1
|
0
|
0
|
5
|
24
|
10
|
8
|
6
|
0
|
||
Renville
|
2
|
0
|
0
|
0
|
2
|
11
|
1
|
6
|
4
|
0
|
||
Rolette
|
6
|
0
|
0
|
1
|
5
|
46
|
14
|
27
|
5
|
1
|
||
Wells
|
2
|
0
|
0
|
0
|
2
|
4
|
0
|
2
|
2
|
0
|
||
Cass
|
17
|
0
|
11
|
0
|
6
|
171
|
59
|
91
|
21
|
3
|
||
Morton
|
10
|
0
|
4
|
1
|
5
|
115
|
26
|
74
|
15
|
4
|
||
Oliver
|
0
|
0
|
0
|
0
|
0
|
7
|
3
|
3
|
1
|
0
|
||
Sioux
|
0
|
0
|
0
|
0
|
0
|
2
|
2
|
0
|
0
|
0
|
||
Divide
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
1
|
1
|
0
|
||
Emmons
|
3
|
0
|
1
|
0
|
2
|
36
|
9
|
21
|
6
|
1
|
||
Lamoure
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
||
Logan
|
0
|
0
|
0
|
0
|
0
|
6
|
2
|
4
|
0
|
0
|
||
McIntosh
|
0
|
0
|
0
|
0
|
0
|
3
|
2
|
1
|
0
|
0
|
||
McLean
|
12
|
0
|
3
|
0
|
9
|
132
|
24
|
88
|
20
|
1
|
||
Nelson
|
3
|
0
|
1
|
0
|
2
|
47
|
7
|
36
|
4
|
0
|
||
Ramsey
|
4
|
0
|
0
|
0
|
4
|
34
|
5
|
18
|
11
|
0
|
||
Sheridan
|
1
|
0
|
0
|
0
|
1
|
21
|
4
|
16
|
1
|
0
|
||
Slope
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
||
Steele
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
||
Stutsman
|
4
|
0
|
4
|
0
|
0
|
68
|
18
|
44
|
6
|
0
|
||
Walsh
|
7
|
0
|
1
|
0
|
6
|
87
|
12
|
70
|
5
|
1
|
||
Metropolitan Counties
|
Burleigh
|
20
|
0
|
5
|
0
|
15
|
246
|
82
|
128
|
36
|
1
|
|
Grand Forks
|
4
|
0
|
1
|
0
|
3
|
113
|
35
|
69
|
9
|
0
|
||
Nonmetropolitan Counties
|
Adams
|
1
|
0
|
0
|
0
|
1
|
5
|
1
|
4
|
0
|
0
|
|
Benson
|
3
|
0
|
0
|
0
|
3
|
41
|
4
|
31
|
6
|
1
|
||
Bowman
|
0
|
0
|
0
|
0
|
0
|
7
|
1
|
1
|
5
|
0
|
||
Cavalier
|
3
|
0
|
2
|
0
|
1
|
30
|
9
|
19
|
2
|
0
|
||
Dunn
|
1
|
0
|
0
|
0
|
1
|
30
|
5
|
21
|
4
|
1
|
||
Eddy
|
7
|
0
|
4
|
0
|
3
|
27
|
5
|
19
|
3
|
0
|
||
Golden Valley
|
1
|
1
|
0
|
0
|
0
|
2
|
0
|
1
|
1
|
0
|
||
Grant
|
2
|
0
|
1
|
0
|
1
|
7
|
4
|
3
|
0
|
0
|
||
Kidder
|
0
|
0
|
0
|
0
|
0
|
14
|
2
|
5
|
7
|
0
|
||
McHenry
|
2
|
0
|
0
|
0
|
2
|
46
|
12
|
28
|
6
|
0
|
||
Mountrail
|
6
|
0
|
1
|
0
|
5
|
77
|
5
|
61
|
11
|
2
|
||
Richland
|
7
|
0
|
3
|
0
|
4
|
100
|
19
|
70
|
11
|
0
|
||
Sargent
|
5
|
0
|
1
|
0
|
4
|
13
|
2
|
8
|
3
|
0
|
||
Stark
|
3
|
0
|
0
|
0
|
3
|
48
|
7
|
29
|
12
|
0
|
||
Traill
|
3
|
0
|
1
|
1
|
1
|
56
|
16
|
36
|
4
|
1
|
Namara offers a connection to over 250K data feeds from every industry and the tools to drive value and insight.