Metropolitan Nonmetropolitan
Want total control?Request access to start using the data. |
County
Want total control?Request access to start using the data. |
Violent Crime
Want total control?Request access to start using the data. |
Murder And Nonnegligent Manslaughter
Want total control?Request access to start using the data. |
Rape Revised Definition 1
Want total control?Request access to start using the data. |
Rape Legacy Definition 2
Want total control?Request access to start using the data. |
Robbery
Want total control?Request access to start using the data. |
Aggravated Assault
Want total control?Request access to start using the data. |
Property Crime
Want total control?Request access to start using the data. |
Burglary
Want total control?Request access to start using the data. |
Larceny Theft
Want total control?Request access to start using the data. |
Motor Vehicle Theft
Want total control?Request access to start using the data. |
Arson3
Want total control?Request access to start using the data. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Howard
|
72
|
1
|
4
|
7
|
60
|
277
|
108
|
149
|
20
|
0
|
||
Sullivan
|
6
|
0
|
0
|
1
|
5
|
174
|
44
|
105
|
25
|
|||
De Kalb
|
7
|
0
|
4
|
0
|
3
|
195
|
54
|
124
|
17
|
|||
Jackson
|
24
|
1
|
4
|
1
|
18
|
349
|
63
|
270
|
16
|
|||
Noble
|
17
|
0
|
1
|
0
|
16
|
234
|
93
|
126
|
15
|
0
|
||
Wayne
|
12
|
1
|
5
|
1
|
5
|
275
|
104
|
162
|
9
|
|||
Metropolitan Counties
|
Allen
|
156
|
4
|
20
|
30
|
102
|
866
|
225
|
603
|
38
|
0
|
|
Bartholemew
|
32
|
0
|
6
|
3
|
23
|
508
|
141
|
303
|
64
|
0
|
||
Clark
|
99
|
0
|
7
|
2
|
90
|
546
|
200
|
295
|
51
|
|||
Vanderburgh
|
55
|
0
|
9
|
9
|
37
|
627
|
113
|
482
|
32
|
2
|
||
Nonmetropolitan Counties
|
Blackford
|
1
|
0
|
0
|
0
|
1
|
30
|
7
|
22
|
1
|
0
|
|
Gibson
|
12
|
0
|
3
|
0
|
9
|
151
|
24
|
102
|
25
|
1
|
||
Grant
|
35
|
0
|
5
|
3
|
27
|
276
|
84
|
181
|
11
|
0
|
||
Greene
|
1
|
0
|
1
|
0
|
0
|
226
|
52
|
156
|
18
|
1
|
||
Huntington
|
6
|
0
|
1
|
0
|
5
|
103
|
25
|
69
|
9
|
|||
Knox
|
9
|
1
|
0
|
1
|
7
|
37
|
12
|
22
|
3
|
|||
Kosciusko
|
62
|
1
|
7
|
3
|
51
|
497
|
155
|
315
|
27
|
3
|
||
LaGrange
|
40
|
2
|
5
|
1
|
32
|
147
|
43
|
83
|
21
|
|||
Miami
|
10
|
0
|
2
|
2
|
6
|
252
|
73
|
173
|
6
|
0
|
||
White
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
||
Brown
|
45
|
0
|
1
|
1
|
43
|
232
|
38
|
171
|
23
|
1
|
||
Delaware
|
43
|
3
|
2
|
2
|
36
|
417
|
149
|
232
|
36
|
2
|
||
Floyd
|
33
|
1
|
3
|
7
|
22
|
389
|
80
|
274
|
35
|
|||
La Porte
|
29
|
0
|
5
|
4
|
20
|
525
|
238
|
257
|
30
|
|||
Lake
|
62
|
4
|
5
|
36
|
17
|
639
|
104
|
453
|
82
|
1
|
||
Madison
|
46
|
1
|
29
|
8
|
8
|
467
|
104
|
334
|
29
|
0
|
||
Shelby
|
36
|
1
|
2
|
0
|
33
|
200
|
72
|
104
|
24
|
0
|
||
St. Joseph
|
148
|
1
|
28
|
27
|
92
|
1162
|
375
|
695
|
92
|
3
|
||
Tippecanoe
|
45
|
0
|
8
|
6
|
31
|
571
|
181
|
355
|
35
|
|||
Wells
|
1
|
0
|
0
|
0
|
1
|
123
|
40
|
80
|
3
|
|||
Clinton
|
14
|
0
|
6
|
6
|
2
|
208
|
44
|
148
|
16
|
0
|
||
Crawford
|
21
|
0
|
1
|
0
|
20
|
105
|
92
|
0
|
13
|
0
|
||
Daviess
|
0
|
0
|
0
|
0
|
0
|
109
|
31
|
64
|
14
|
|||
Franklin
|
2
|
0
|
0
|
1
|
1
|
145
|
64
|
74
|
7
|
|||
Jay
|
5
|
0
|
1
|
0
|
4
|
57
|
5
|
43
|
9
|
|||
Jennings
|
17
|
0
|
3
|
0
|
14
|
266
|
153
|
102
|
11
|
|||
Lawrence
|
129
|
0
|
5
|
2
|
122
|
221
|
71
|
120
|
30
|
6
|
||
Steuben
|
22
|
1
|
8
|
1
|
12
|
439
|
123
|
287
|
29
|
0
|
||
Wabash
|
3
|
0
|
0
|
0
|
3
|
135
|
35
|
95
|
5
|
0
|
Namara offers a connection to over 250K data feeds from every industry and the tools to drive value and insight.